Bohr to Bohm: Surveying Quantum Interpretations

Brian Kent

Why Care?

- They make vastly different statements about the fundamental building blocks of nature
- Some interpretations do have unique predictions
- Agnostic stance for the talk
- Forewarning: mainly philosophizing
- (You'll know about as much as me by the end)

References and Resources

"Quantum Theory and Measurement" by John Wheeler

- "What is Real?: The Unfinished Quest for the Meaning of Quantum Physics" by Adam Becker
- "Philosophy of Quantum Physics" by Tim Maudlin
- Stanford Encyclopedia of Philosophy

What's Weird About Quantum?

Stochastic measurement,
 Schrodinger otherwise

What is a Measurement?

- Deterministic evolution of wavefunction: measurement is stochastic collapse
- Measurement: When quantum object interacts with classical object
- If quantum is fundamental: classical objects made of quantum objects
- Are wavefunctions real? Or just an update of our information?

Delayed-Choice Experiment

What's Weird About Quantum?

Stochastic measurement,
 Schrodinger otherwise

Entanglement

Bell's Inequality

- 1. If A measures S_z and B measures S_x , there is a completely random correlation between the two measurements.
- 2. If A measures S_x and B measures S_x , there is a 100% (opposite sign) correlation between the two measurements.
- 3. If A makes no measurement, B's measurements show random results.

Spin component measured by A	A's result	Spin component measured by B	B's result
Z	+	Z	-
Ζ	—	x	+
x	—	Z	—
x	_	Z	+
Ζ	+	x	-
x	+	x	-
Ζ	+	x	+

Bell's Inequality

Population	Particle 1	Particle 2	$N_3 + N_4 \le (N_2 + N_4) + (N_3 + N_7)$
N_1	$(\hat{\mathbf{a}}+,\hat{\mathbf{b}}+,\hat{\mathbf{c}}+)$	(â -, b -, ĉ -)	
N_2	$(\hat{\mathbf{a}}+,\hat{\mathbf{b}}+,\hat{\mathbf{c}}-)$	(â -, b -, ĉ +)	$(N_3 + N_4)$
N_3	$(\hat{\mathbf{a}}+,\hat{\mathbf{b}}-,\hat{\mathbf{c}}+)$	$(\mathbf{\hat{a}}-,\mathbf{\hat{b}}+,\mathbf{\hat{c}}-)$	$P(\mathbf{a}+;\mathbf{b}+) = \frac{\nabla P(\mathbf{a}+;\mathbf{b}+)}{\sum_{i=1}^{8} N_{i}}$
N_4	$(\hat{\mathbf{a}}+,\hat{\mathbf{b}}-,\hat{\mathbf{c}}-)$	$(\hat{\mathbf{a}}-,\hat{\mathbf{b}}+,\hat{\mathbf{c}}+)$	\mathbb{Z}_{l} \mathbb{T}_{l}
N_5	$(\hat{\mathbf{a}}-,\hat{\mathbf{b}}+,\hat{\mathbf{c}}+)$	$(\hat{\mathbf{a}}+,\hat{\mathbf{b}}-,\hat{\mathbf{c}}-)$	$D(\hat{a} + \hat{b} +) < D(\hat{a} + \hat{a} +) + D(\hat{a} + \hat{b} +)$
N_6	$(\hat{\mathbf{a}}-,\hat{\mathbf{b}}+,\hat{\mathbf{c}}-)$	$(\hat{\mathbf{a}}+,\hat{\mathbf{b}}-,\hat{\mathbf{c}}+)$	$P(\mathbf{a}+;\mathbf{b}+) \leq P(\mathbf{a}+;\mathbf{c}+) + P(\mathbf{c}+;\mathbf{b}+)$
N_7	$(\hat{\mathbf{a}}-,\hat{\mathbf{b}}-,\hat{\mathbf{c}}+)$	$(\hat{\mathbf{a}}+,\hat{\mathbf{b}}+,\hat{\mathbf{c}}-)$	
N_8	$(\hat{\mathbf{a}}-,\hat{\mathbf{b}}-,\hat{\mathbf{c}}-)$	$(\hat{\mathbf{a}}+,\hat{\mathbf{b}}+,\hat{\mathbf{c}}+)$	
			$\sin^2\left(\frac{\theta_{ab}}{2}\right) \leq \sin^2\left(\frac{\theta_{ac}}{2}\right) + \sin^2\left(\frac{\theta_{cb}}{2}\right)$

Assumptions for Bell's Inequality

- Local Causal hidden variables
- Measurement independence: experimental settings are free parameters
- Unique Outcomes

Who's Playing?

Copenhagen

Pilot Wave

Many Worlds

Spontaneous Collapse

Complementarity

Copenhagen (Bohr)

- Different aspects of reality can never be seen in totality
- Experimental arrangement is not independent
- Must always frame things in idealized, "classical" language ("electron-positron interaction", CM->QM)
- Bohr-Heisenberg Cut

Delayed-Choice Experiment

Delayed-Choice Copenhagen

"...we must conclude that our very act of measurement not only revealed the nature of the photon's history on its way to us, but in some sense *determined* that history. The past history of the universe has no more validity than is assigned by the measurements we make—now!"

Copenhagen Criticisms

"...conventional formulations of quantum theory, and of quantum field theory in particular, are unprofessionally vague and ambiguous. Professional theoretical physicists ought to be able to do better." – John Bell

• "Was the wavefunction of the world waiting to jump for thousands of millions of years until a single-celled living creature appeared? Or did it have to wait a little longer, for a better qualified system . . . with a Ph.D.?"

de Broglie-Bohm

- Initially developed by de Broglie in 1927, Bohm reinvented in 1952 after dissatisfaction with QM
- Bohm was stripped of US citizenship while in Brazil due to past communist affiliations
- Same from Aharonov–Bohm
- Theory: non-local, deterministic
- Disliked by mainstream: Einstein for non-local, Bohr for circumventing complementarity

Mathematics

Decomposition: $\psi(\mathbf{x},t) = R(\mathbf{x},t)e^{iS(\mathbf{x},t)/\hbar}$. Note that $R^2(\mathbf{x},t)$ corresponds to the probability density $ho(\mathbf{x},t) = |\psi(\mathbf{x},t)|^2$

Continuity equation:
$$-\frac{\partial
ho(\mathbf{x},t)}{\partial t} = \nabla \cdot \left(
ho(\mathbf{x},t) \frac{\nabla S(\mathbf{x},t)}{m}\right).$$

Hamilton-Jacobi equation: $\frac{\partial S(\mathbf{x},t)}{\partial t} = -\left[\frac{1}{2m} (\nabla S(\mathbf{x},t))^2 + V - \frac{\hbar^2}{2m} \frac{\nabla^2 R(\mathbf{x},t)}{R(\mathbf{x},t)}\right].$

For a spinless single particle moving in \mathbb{R}^3 , the particle's velocity is given by

$$rac{d {f Q}}{dt}(t) = rac{\hbar}{m} \, {
m Im}iggl(rac{
abla \psi}{\psi} iggr) ({f Q},t).$$

For many particles, we label them as \mathbf{Q}_k for the k-th particle, and their velocities are given by

$$rac{d \mathbf{Q}_k}{dt}(t) = rac{oldsymbol{\hbar}}{m_k} \, {
m Im}iggl(rac{
abla_k \psi}{\psi} iggr) (\mathbf{Q}_1, \mathbf{Q}_2, \dots, \mathbf{Q}_N, t).$$

The main fact to notice is that this velocity field depends on the actual positions of all of the N particles in the universe.

Properties

- Requires initial wave function, initial position
- Probabilities are really our lack of knowledge
- Supposedly shown |Ψ|² is "typical" probability distribution of particles in region
- Particle trajectories don't cross (for single particle)
- Space is R^{3N}, not R³

Double Slit

(b)

Delayed-Choice Experiment

Criticisms

- Particle doesn't backreact. Mass, charge spread over pilot wave
- Why have a particle?
- Non-relativistic
- + or -: Super non-local

Decoherence

- How interference effects are suppressed when analyzing large degrees of freedom
- Entanglement makes distinct measurement outcomes no longer interfere, appear "classical-like"
- Doesn't solve measurement problem, how does one pick possible measurement outcomes?

Hugh Everett III

- PhD at Princeton under John Wheeler
- Thesis edited greatly due to pressure from Bohr, later full account released
- "Many–Worlds" interpretation popularized by Bryce DeWitt
- Everett left academia, joined Pentagon

Formalism

$$|\Psi_{\mathrm{UNIVERSE}}
angle = \sum lpha_i |\Psi_{\mathrm{WORLD}\,i}
angle$$

- What if everything evolved according to the Schrodinger equation? What if we didn't discard parts due to "measurement"?
- "Theory of the Universal Wavefunction"
- Measurement by decoherence: interactions "split" wavefunction
- These split realities are perceived by us as the "true" world, but there are many

Delayed-Choice Experiment

Pros

- There is no measurement problem, or measurement at all
- Just one universal wavefunction, predictably evolves
- Consistent with relativity
- "Resolves" most quantum paradoxes
- A "better" Pilot Wave theory

- Assigning probabilities to branches
- Preferred basis: why do measurement outcomes align with separation of "worlds"?
- Existential/scientific questions

Testability

- The wavefunction never collapses
- Macroscopic interference from coherent superposition
- "Wigner's Friend"

Spontaneous Collapse

- All quantum wavefunctions spontaneously collapse with a very small probability
- Only when object have decoherence, large degrees of freedom become entangled independently
- One degree of freedom bound to collapse, collapsing everything
- Bound on collapse makes it semi-testable
- What if probability too low?

QBism

- Quantum Bayesianism
- Quantum is inherently subjective, probabilities are personal beliefs
- Subsequently states are not real, but constructions

That's All

Hope you enjoyed